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ABSTRACT. Let TR A be complex constants. The

set Wiqg-eepn)(A) = {Boyangxp}, wmere (xeee)
vary over all orthogonal systems in cn, is called a
generalized numerical range of a given n X n matrix A.

In this paper we study inclusion relations of the form

) c W ) which hold uniformly for all
b
n

w('YJ."""Yn (7,
n-square matrices A. In particular we concentrate on the
case where the coefficients are real. Such inclusion
relations yield simple inequalities among generalized
numerical radii. Finally, a further generalization of the

above numerical range is discussed.

1, Introduction

ILet A be an n X n complex matrix; let c = (qi,-—-,qh) ec” vea
fixed complex vector, and let An be the set of all orthonormal n-tuples
of vectors in C". In this paper we study some inclusion relations between

generalized numerical ranges which are sets in the complex plane of the form

n
HC‘A) u w(ryl’...,oyn)(A) - {Jfl 'YJ(AXJ,XJ) : (*l)"‘;xn) € An} - '
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From the definition it is clear that wc(A) actually depends only on
the unordered set ['yl,.. .,vyn} rather than on the ordered n-tuple
¢ = ('yl,---,fyn). In the following the vector ¢ will always stand as a
representative of the set {ryl,...,ryn} and we write ¢ ~c¢' if c and
¢' represent the same set.

We recall now the definition of the k-numerical range given by Halmos

(1, §167], which after a simple normalization becomes,
Wk(A) = {% tr(PAP) : P = projection of rank k}, (L<k<nm).
Evidently Wk(A) may be written as

Kk
(1.1a) W, (A) ={%‘ 3?1 (Axgxg) ¢ (xp5eee,%) € Ak}

where Ak is the set of all k-tuples of orthonormal vectors in cn. Hence

we see that
1
(1.1b) Wk(A) = WC(A) with ¢ = -k(el + ees + ek) #

{e ;j};—l being the standard basis for ¢®. Thus, the k-numerical range is
a special case of a generalized numerical range. In particular, for k =1,

i.e., for c=¢e we obtain the classical range

1,
W(A) = W (A) = {(Ax,x): [x] =1} .
It is also clear that

W (A) = {1-11 tr A} A

Berger, [1, §16.7], has shown that Wk(A) is convex. It was later
proven by Westwick, [2], that Wc(A) is convex for any ¢ € R*. Westwick

also gave an example which shows that for complex vectors c € ¢® with




e

n > 3, the range Wc(A) may fail to be convex.

Certain inclusion relations involving k-numerical ranges were given
in [3]. As in [3], we are interested here in inclusions which hold uniformly
for all A € cnxn’ that is for all n X n complex matrices. In this paper
we shall restrict our attention to elementary inclusion relations, i.e,

relation of the simple form
(1.2) Wc(A) = )\wc.(A), A = constant.

In a forthcoming paper we shall consider inclusion relations involving
finite linear combinations and integrals of generalized numerical ranges.

We begin in Section 2 with some definitions. This leads, in Section 3,
to the construction of inclusion relations of type (1.2) for the general
case c,c’ € C°. Further results are obtained in Section 4 for the case
c,c' € r® . In Section 5, we derive some inequalities among generalized
numerical radii. Finally, in Section 6, we define a further, and in a certain

sense an ultimate generalization of the concept of numerical range.

2. Partial order relations

We begin by defining two partial ordar relations among complex vectors.

DEFINITION 1. (i) For ¢ = ('yl,---,'yn) and c¢' = ('Y.'l"""yz'z) in ¢"

we say that ¢ < ¢' if there exists a doubly stochastic matrix S (i.e., a
matrix with non-negative entries whose row and column sums are 1), such |
that ¢ = 8c'.

(11) The vector c¢ is obtained from c¢' by pinching if two compo- ‘

nents 'yi,'ys of ¢' are replaced by Y0 Y with




i

(2.1) 'yi=a"y:'l+(1-a)'y‘;, 7J=(1-a)7i+a75; Psac<l,

while the other components of c¢ remain unchanged. Note that pinching an
n-tuple c' consists of moving two of its components towards their mid-

point, and thus decreasing

conv(c') = convex hull {'yi,---,'yn} .

A similar concept of pinching was used in [4] by Horn and Steinberg.

(1i1) We say that c << ¢' if ¢ is obtained from c¢' by a succes-
sion of a finite number of pinchings.

Note that the relations <, << are in fact relations between the
wordered n-tuples {y;,---,%} and {Wi,...,wg}. In case (i) it follows
from the fact that doubly stochastic matrices are closed under multiplica-
tions by permutation matrices. For case (iii) it follows directly

from the definition.

THEOREM 1. The relation ¢ << c¢' implies ¢ < c¢' but not conversely.

Proof. If ¢ << c¢', then assume for simplicity that c¢ has been obtained
from c¢' by a single pinch. Hence, for some i,j € {1,-++,n} and a with
0<a<1l, wehave (2.1). So ¢ = 8c', where 8 is the doubly stochastic

matrix defined by

i
1 p=q#f1,3,
mipeer o (p,a) = (4,1),(3,3) »
Pq 1-a (p,a) = (1,3),(3,1) ,
k 0 otherwise .

Consequently c¢ < ¢' and the first part of the proof is established.




Next consider the vectors c = (1/2,i/2,1/2 + i/2) aad c¢' = (0,1,i).

Clearly

e 12 9
(2.2) c=Sc' with 8= |[1/2 o0 1/2

6 afe 1,

so ¢ < c'. However the components of ¢ are all located on the

different edges of conv(c). Therefore, any chain of non-trivial pinches

on c¢' yields a vector c", where at least two components of c¢ are

outside conv(c"). Hence ¢ # c¢" and the relation c << c¢' fails to hold.
We now wish to show that < is a partial order relation. For this

purpose we need the next lemma which seems of independent interest.
LEMMA 1. If c<c' and c' <c, then c~c'.

Proof: Let Qs es0y be the distinct components of ¢, ordered so that
Ial| 2 s o Iakl Let the multiplicity of Q, be m, i m, = n), and

assume that ¢ has been arranged to take the form

(2.3) c = (@, :"‘:ak:"':ak) .

In view of the remark following Definition 1, the relations c <c', ¢' < ¢
are still valid, hence there exist doubly stochastic matrices §,S' such

that
(2.4) c=8" and c¢' =S8"c ;

thus ¢ = SS'c. Since the class of n X n doubly stochastic matrices form

a multiplicative semigroup we have




Ay

where the multiplicity of «

b

(2.5) ¢c="T, (T=ss"),
where T 1is doubly stochastic as well. We assert that
(2.6) T=T1®---®Tk,

where T 2 is doubly stochastic of order m, X m,.

To prove (2.6) assume for simplicity that k = 2, i.e.,

¢ = (a 20090, (12,---,(.'12), o # oY) Iall 2 Iagl ’

(£ =1,2), is m, and m + m, = n. Take

£ L 3.

any of the first my components of the equality in (2.5), say the i-th one.

Since Iall > |a2| this leads to

m
<El i )a +( % i )a
1 13/°1 J=ml+l ij/ 2

(F n)le (2 meol < (7 1, )il = Iy
< T (0 2 r T Q. < >l a = |
S\ WL\ 1 <J=l - R

loy | =

Hence we have equality which, in view of the fact that ay ;! Qps WAy hold
if and only if Tij =0 for J = m, + l,:---,n. This means that the first
m, Tows of T wvanish beyond their my entries, so all the weight of these
rows is concentrated in the first my columns. Consequently, the first my
colums of T vanish beyond their ml elements as well, and we obtain the
desired decomposition T = Tl @ Te.

Next recall that doubly stochastic matrices are convex combinations of

permutation matrices Pa . In particular S = Ea ao’Po*’ thus

i '
T = SS =§QO,P°,S ..

The matrices aUPOS' in the above sum have non-negative entries; hence they
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must all have the same block decomposition as T. Now we choose a
coefficient o, with o # 0, and conclude that PTS' decomposes
according to (2.6). Since PTS' is doubly stochastic and it has the same
decomposition (2.3) as ¢, it follows that PTS'c = c. 8o, finally, by

(2.4),

R Py e | T R Pt
¢ =8'c= (PT )(PTS c) = Fe~c,

and the lemma follows.

REMARK. The-above proof contains a special case of the following obser-

vation on group-rings over the reals (or any ordered field). Let
R(G) = {Toe; * a; € R, g €G}

be a group-ring of G over R, and let Kﬁ be the convex hull of G

in R(G), that is
K, ={Zoeg 0,20, T, =11.

Then Kb is a multiplicative semigroup whosé units are the elements of G.
If H is a subgroup of G, then KH is a sub-semigroup of KG and two

elements u,v of KG satisfy uv ¢ KH if and only if there exists an

1

element g € G such that ug and g v are in KH' Thus the only divisors,

in KG’ of elements of KH are associates of elements of KH'

We conclude this section with the following property of < and << .

THEOREM 2. The relations < and << are partial order relations on the set

of unordered n-tuples.
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Proof. We have to show that < and << are reflexive, transitive and
antisymmetric. The first two properties are easily verified, and by Theorem 1,
¢ << ¢' implies c < c¢'. 8o, it suffices to prove the antisymmetry of <,
i.e., that ¢ < ¢' together with c¢' <c yields ¢ ~c'. But this is the

statement of Lemma 1, and the proof is complete.

3. Elementary inclusion relations

Before considering a general n X n case we present the following

result concerning 2 X 2 matrices.

(0

IEMMA 2. If A is a 2X 2 matrix, then for any « 9

l,

(3.1) W(al’az)(A) = (al - a2) W(A - %(tr A)I) + %(Qﬁ + ae){tr A} .
Thus W(al,a2)(A) is convex. |

Proof. As before let A2 denote the set of all orthonormal pairs of

2-vectors. If =x.,x

12 %5 is in A2, then

(3.2) al(Axl,xl) + ap(A x2,x2)

"

Hay - ap)(Axy,x) - Slay - a)(Axexy) + 3l + a)(Ax, %)) + (Axy,x,))

p ! i
(e - a,)(A X)Xy - 3oy - ay)trA + 5(a; + ay)tr A

(0 - a)((A - 3(tr A)I)x;,x)) + Fay + ap)tr A .

80, (3.1) is obtained from (3.2) as x,,x, vary over Ay

3"
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The convexity of W (A) is implied by the comnvexity of the
(a,a,)

l)
(classical) numerical range and the lemma follows.

Using the above lemma we obtain our first general inclusion relation.

COROLIARY 1. If (v,7,) is obtained from ('yi,'yé) by pinching, then

(3.3) 'Yg)(A) cwW yé)(A), VAeC,, -

W !
( 'Yl, ( 'Yl)

Proof. By definition of pinching there exists an ¢, 0 <a<1, such that
m=ont@-ay, Y=(1-ay+oar .
Hence, by Lemma 2, the two sets in (3.3) are

(3.4a) W(W"lﬂ'e)(A) = (7] - ¥5) W(B) + (7 + vb) {tr A}

and

(3.4b) W(Yl,“Ye)(A) = (20 - 1)(y) - 75) W(B) + %('v'l + 7,) {tr A},

where B = A - %(tr A)I.

It is known (e.g., [1],§166) that the numerical range of any 2 x 2
matrix is an ellipse (possibly degenerate) with the eigenvalues as foci.
That is, W(B) is an ellipse centered at (1/2)tr B. 1In our case tr B = 0,
s0 (qi - wg)W(B) is convex and symmetric with respect to the origin.

Therefore, since -l1<2x - 1< 1, we have

(20 - 1)(¥] - ¥2) W(B) c (v} - ) W(B) .

Hence the set in (3.4a) includes the set in (3.4b), and (3.3) follows.

LEMMA 3. If c¢ is obtained from c' by pinching, then,

(3.5) W(A) cW . (a), WAeEC, .-
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Proof: Let 1i,j, i< j, be the pinching indices described in (2.1).

Every fixed choice of n - 2 orthonormal vectors in Cn,

(3.6) X x cee X,

S S 5 i TS L I LR L n

determines a 2-space, z, perpendicular to these vectors. The values of

WC(A) and Wc,(A) corresponding to the vectors in (3.6) are, respectively,

n
g Ax_, W FA) ,
(3.72) kfl T (Ax% ) + Wi’"Y;j)( )
kfi,
and
n
(3.7b) 2‘,1 % (Axk,xk) +W(Yi»'Yj)(PA) -

k=
k#1,J
Here P is the projection of ¢t X, and it is understocod that

W PA is defined over X, 1i.e.
(a:B)( ) ~ ¢

W(a ﬁ)(PA) = {a(Ax,x) + B (Ay,y) : x,y € X; x,y orthonormal} .
s 4 ’

Since X 1is 2-dimensional and PA maps X into itself, the restriction
of PA to X may be presented by a 2 X 2 matrix. Moreover, it is clear
from (2.1) that since ¢ 1is a pinch of c', then (w&,qs) is obtained

from (qg,qﬁ) by the same pinching. Thus, Corollary 1 implies that

)(PA) cW )(PA) .

W
(%% (%2

Consequently, the set in (3.7b) includes the set of (3.7a). Since the

vectors in (3.6) were arbitrary, relation (3.5) holds and the proof is

complete.

The following theorem is an immediate consequence of Lemma 3.
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THEOREM 3. If ¢ << c', then

(3.8) WC(A) c Wc,(A), VA e Crxn *
Proof. By hypothesis, there exists a finite sequence, c¢' = cl,ce,---,cl =,
such that each c; (L<i<#£), is obtained from 1 by pinching.

So, by Lemma 3,

W,(A) =W _(A)c - c Wcl(A) = W, (A), VAecC

£
and (3.8) follows.

At this point it would be natural to ask whether c¢ < ¢' implies (3.8)
or not. To answer this question in the negative take A = diag (0,1,i) and
¢' = (0,1,i). Westwick [2], has shown that wc,(A) includes the points 1
and 2i, but not the open line segment joining them. In particular
(L +2i)/2 { W ,. Now take c = (1/2,i/2,1/2 + i/2). By (2.2) we have that

¢ <c'; yet the point

1 21
q&(A e3,e3) - Wé(A el,el) % qé(A e2,e2) - -;

of Wc(A) does not belong to W,.(A).
A somewhat weaker result holds for the relation <, and we establish

first the next lemma.

IEMMA L4, Given two bounded disjoint convex sets xl, K? in cn, then

there exists a linear functional ¢ on cn, such that o(x) # o(y) for

2}} X € yl, y € K2-

Proof. We first consider Kl’ X, as convex sets in <qu By the Separation
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Theorem for real vector spaces (e.g., (5], Theorem 20, p. 204), there exists
a linear real functional (x) on R'E‘n , such that ¥(x) < ¥(y) for all

X € }{l, y € }(2. More explicitly we have

W(x) = Byq8yy + Byobio * Boyboy * Bopbon ottt F Bpifpy * Bpofyo

where x = (El:"',§n), EJ = 531 = 1532’ and the Bij are real coef-

ficients. Now define a complex functional on c:
: w(x) Ly Slgl e ey Bngnl Bj = le = 1632 .

"It is easily seen that y(x) = Re(9(x)); so Re(q(x)) < Re(p(y)) for

X € )(1, y € )(2, and the lemma follows.

THEOREM 4. We have c¢ < ¢' if and only if

(3.9) WC(A) = conv{Wc.(A)}, VA €eC, -

Proof. If ¢ <c', then, for some doubly stochastic S, we have ¢ = Sc'.
The matrix S is a convex combination of permutation matrices Po' Thus

c=X aoPoc', and the relation among the components of ¢ and c¢' is

'YJ = EaU'YO'(J)’ J=1--e,n.

This yields that any point X 'Y,j (A xj,xj) of WC(A) satisfies

n
T (A x.‘]’*.‘]) 2 th'YU(J)

z 'YJ (A xj’xd) - -1 =

n
it [.‘)El To(g) A xJ’xJ)] :

o




b

w135

That is, each point in Wc is a convex combination of points in Wc. and
(3.9) follows.
For the necessity part of the proof we recall that the condition

¢ < ¢' 1is equivalent to the fact that ¢ Dbelongs to the convex set
= {Sc': § = doubly stochastic} .

Let ¥, be the set which consists only of c. If ¢ £ c’, then

¥, n X, = ¢, and by Lemma k4 there exist complex coefficients Byr 9By

such that the linear functional o(x) = Zﬁ By satisfies
(3.10) @(c) £ {p(x): x € xl} = {p(8c') : 8= doubly stochastic} .

Consider now the matrix B = diag(Bl:"',Bn). We have

n
.11 = = W %
(3.11) o(c) = B £y = Dy(B epe) € Vi (2)
On the other hand take any point Zb qﬁ OSxJ,xJ) in Wc,(B). Here
n 2
{xJ = (E%J, nj)}J A is an orthonormal system in €, so Z&elgijl
Zb lgijl = 1 and consequently the matrix X, with xij — Igijl is

doubly stochastic. Hence

. 2
'vJ(BxJ,x )= I > aileidl

3=1 23 fml

n

= I B Z

ne = xij g - p(Xe') .

This gives

wc.(n) c {p(Sc') : 8 = doubly stochastic} ,

and since the set on the right side is convex, we get in fact

(3.12) conv wc,(B) c {9(Sc') : 8 = doubly stochastic} .



wlie

The inclusion in (3.12) together with (310), (3.11) yields

wc(B) ¢conv Wc,(B), and (3.9) is violated.

L., The case of real coefficients

For real vectors c¢ the situation is mich simpler. As in the complex
case, the set Wc(A) remains unchanged under permutations of the 'Y;j'

Therefore, given a set of coefficients {'yl,---,'yn} , it will often be con-

" venient to arrange them in decreasing order.

DEFINITION 2. A real vector c¢ = ('yl,n-,'yn) is called ordered if

712722.‘.Z'Yn >

The convenience of ordering real vectors is demonstrated in the next

lemma, .

IEMA 5. If c' is ordered and ¢ < ¢', then

(4.1) E %< % 7 k=1l,¢ee,n,

with equality for k = n.

Proof. If ¢ < c¢' then for some doubly stochastic S, we have c¢ = Sc',

Hence for a fixed k, 1< k<n,

k k n n k
(.2) T y= % ZS'Y'=E(ZS>'Y'-
By P d gn 1T S\g5 TN/
Setting
k
ad= jf]_ 813: J=1,28¢e,n,



i &

38

we have
n
(4.3) 0<a, <1 and P a =k.
i [ J:ld

So, using the fact that c¢' is ordered, we zet from (k.2), (4.3)

k - n k

T v=ZL av:<Z 7.

g > g3 99= 3"

For k =n each aJ = 1 and we have equality.
We remark that the relations in (k4.l) are discussed in Chapter 2 of
[6], beginning with Section 2.18.

Two mofe preliminary result leads to Theorem 5.

LEMAA 6. Let wg,qg with qi 4 qﬁ be two real components of c'. Let 8

satisfy 0<8® < - 'y&. Then

)

TR
c=¢Cc - b(ei -e

J

is a pinch of c'.

Proof. Demote a' =8/(y; - 73). Evidently 0 <a' <1, and by the

definition of ¢ we have

1

Y - @'y - %)

(bba) g =7 -8 (1-a")y +a'y

and

MDY Ngm e B g B iy Yy

1

] \l
a'fyi+ (1-a)'yd .

Equations (4.4) are equivalent to (2.1), hence ¢ is a pinch of ¢ and

the statement is proven.
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LEMMA 7. Let c,c' be ordered. If c,c' satisfy (4.1) with equality

for k =n, then c <<c'.

Proof. The idea of the proof is to construct a sequence of vectors

¢! =‘cl,c2,---, such that each ci has the following three properties.

First,
(4.5) ey << ¢y 4, 1223
second,
k k
(4.6) El Y<S Z Yy ks LB i,
3= 31

with equality for k = n; and third, the number of equal elements in the
sets {q&l,---q&n} and {Wi,---,qh} is at least i - 1. Here the 2

and Wij are, respectively, the components of ¢ and ci.

By the last property, there exists a finite ¢ (£ <n), for which

¢, = c. Hence, by property (4.5) we get

(4.7) C=e, << ee Q= c',

which leads by transitivity to the desired result c << c'.
As indicated, we start by choosing ¢y = c', for which the first and

third properties are satisfied in a trivial manner. To show the second, we

use the hypothesis ¢ < ¢' with Lemma 5, and find that ¢ and ¢ c

l:_:
satisfy (4.6).

Now suppose that c¢,,+++,c, with the above properties has been con-

¢ i

structed. If c; =c, then the sequence (4.7) is complete; so let us
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assume ¢, £ ¢ and construct c We have the inequalities in (k.€)

i+l°
from which we conclude that there exist an r, 1< r <mn, so that

(%09} M= Ny T Yt %S Yro
and a least s, r <s <n, such that
(4.8p) 5> %, -

Since c is ordered, we have 1, >, which together with (4.8) gives

% " % Yg > Vg So the quantity

(%.9) 8 = min{y, - Yo Y - Vgl
satisfies 0 < b < % = % Hence, by Lemma 6,
(4.10) i1 =04 - 8(e, - eg)

is a pinch of ¢y So C541 << Cys i.e., Ci41 has the first property (L4.5).

Next, we wish to show that ¢ has the second property, that is

i+l
k k :
b < Z v k=1,¢e+yn,
e - 4 $ud 341,39 .
with equality for k = n. Since 5 satisfies (4.6), and since 41 is

obtained from ci by changing only the r and s components while their
sum is preserved, it is clear that for any k with 1<k<r or
s <k<n, wehave

k k

Tv<E Ty,
o1 37 a1 ™

Ly

L ¥ .
31 i+1,J

Now use (L4.8) - (4.10) to find that

Ti41,r = T 22 % " %%
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So, also for r < k < s,

k k
%< I %.<ZT
3= 50 W= g0

L

J

Finally, consider the third property. According to the construction of

Ci410 vO have w&+l,r -y or Wi+1,s = WE’ or both. S0, by comparing

with (4.8) we see that the number of components of ¢ which equal

i+l

components of ¢ 1is greater than the number of equalities for ¢, and c,

i
and is therefore at least i. This completes the proof.

Ccmbining Lemmas 5 and 7, together with Theorem 1, we easily obtain

the following,

THEOREM 5. Iet c, c¢' be ordered vectors. Then each of the relations

c<c' and ¢ << ¢' is equivalent to

(b.11) ﬁ& = Y » k=1,-++,n,

Lot
Lw

J

with equality for k = n.

In general, it is more convenient to verify condition (4.11), than
to check whether ¢ < ¢' or ¢ << ¢' according to the original

definitions.

Since the relations ¢ <c' and ¢ <<c' are preserved under

permutations of the 73, 73, we rephrase part of Theorem 5:

THEOREM 6. If c, ¢' are real vectors, then the relations c¢ <! and

c << ¢' are equivalent.

We come now to one of the main results.
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THEOREM 7. If ¢, c¢' are real, then ¢ <c¢' if and only if

(4.12) wc(A) cwc,(A), VA €Cp

Proof. By Theorem 6, ¢ <c¢' implies c <<c', so by Theorem 3 we

nave (4.12). Conversely, (4.12) yields (3.9) and by Theorem k, ¢ <o,

REMARK. Theorem 7 can be obtained immediately from Theorem 4, using the
fact that for real c, W, is convex, ie., W, = conv[wc]. Yet, the

convexity if wc is not essential to the proof.

COROLLARY 2. (a) If ¢ = (y,---,%) ¢ R®  with T, ¥; = @ then

(a/n,-++,a/n) < ¢ and hence

o
(k.13) {; tr A} c Wc(A), A € (:nxn 2
(v) If 'YJZO’ then ¢ < (@,0,--+,0) and

Wc(A) ca wa), wAhecC o -

(¢) If a=0 then

(h.1%) N W, (A) = {0}.
Ay

Proof. First take the ordered version of c¢ and observe that Theorems 5, 7
yield (a) and (b). Now, if « = 0, then according to (4.13), 0 ¢ wc(A) for

all A. Since W, (0) = {0} we have (4.14) and the corollary follows.
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COROLIARY 3. (Fillmore and Williams). The k-numerical ranges satisfy

(k.15) {% tr A} = wn(A) C oo c:We(A) ¢ wl(A) = W(A) .

Proof: By (1.1), WB(A) =W, (A) with the ordered vector

s
c=('Y ...ry)r_l(e +-o-+e).
s sl’ ? Yan i s
"For all 1<s<n we have
k 1 1 k
E py-geuike>grymake e L Y g
J=1 J=1
with equality for k = n. So Theorem 5 implies that S S B l<s<n.
Hence, by Theorem 7,
ws+l(A)=wc (A)cWc (A):WS(A) H 8 =1+,n-1,

s+l s
and we get (L.15).
This result was obtained in a different way, using the convexity of Wk,

by Fillmore and Williams, [7].

REMARK. In general, for given vectors c = (yl,...’,yn), s' ('Y:'L"”"Y;])’

there exists no constant A such that ¢ < A¢'. To demonstrate this state-

ment assume that c¢,c' are ordered and that T 73 >0, T 'yJ >0, 1If
¢ < A¢', then for some doubly stochastic S we would have ¢ = 7\Sc', which

yields
n n n n

T %=\ 2 L 8, %=AT v .
ol BB e i e R
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Consequently
(k.16) A=Zv /EY
so A>0, and Ac' is ordered. Now, by Theorem 5 we should get
k k
(h.l—() z 'YJS7\ T 'Y:'j ) k=l:"':n)
J=1 J=1
with equality for k =n. But as A of (4.16) satisfies (4.17) for k = n,
it will not, in general, satisfy the rest of (4.17).

The situation is quite different in the homogeneous case I 'yj =X 'y:'] =0,

where we have the following result.

IEMMA 8. Let c, ¢' be ordered vectors with }:j Yy = }_‘,J 'y& =0 and c' £ o.

Set
'Yl+ ceee + 'Yk
(h-189') = T"l(c;c') = max T T
I H*T Tt %
Vo + oo + Y
(4.18b) ¢ =t(c,c') = min —3 AT

'Y LI ] !
1<k<n 'n + ¥ % el

Then ¢ < A¢' if and only if A>n or A< {.

Proof. First we show that
'yi+---+'yl">0, 'yx'l+~-+'yr'l_k+l<0; Esl,cer,mel.,
Since T 'ys = 0, 1t suffices to prove the left inequalities, so assume that

' LN ) A
"t + % <0 for some k< n. This means that 'Yl':+1+ e & 9 >0,

thus 'Yl'(+l > 0, and consequently 'Y]'. Zene > %esq = 0+ Since c¢' fo,
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we have 'y'l > 0 and our assumption is contradicted. Similarly, the partial
sums ¥, + ccc + Yo k < n, are non-negative, and it follows that 17, {
of (4.18) are well defined and satisfy n >0, {<o0.

Now choose A with A > 0. The vector A¢' remains ordered, and

according to Theorem 5, ¢ < A¢' if and only if

k k
ANz 'Y'Z M PN k=1,°++,n,
=1 j=1 J

with equality for k = n. The hypothesis T 'Yj =2 'y‘_'] = 0 implies equality
for k=n; so ¢ < A¢' is equivalent to
k k

(4.19) NI %2> v k=1-°,n-1.
3=1 3=1

However, by the definition of 1,

k k
TIZ'Y;'}ZE'YJ’ k=1¢¢e,n -1,
=1 37 3u1

with equality for some 1< k <n. Thus, (4.19) holds if and only if
A>T

If A< 0, then Ac' becomes unordered, and its equivalent ordered
version with a positive multiplier is (-7\)(-'}';1, ---,-'yi). Using the previous

argument, we find that c¢ < A¢' if and only if

fY 4 eee + fY fY + eee + 'Y
-A > max s i ® MR s i = ol ,
1<k<n "Yn I i g ’Yn_k+1 lsk(“ 'Yn pett A A 'Y -k+1

and the lemma follows.

Theorem 7 and Lemma & have an immediate consequence.

THEOREM 8. Let ¢, ¢' be ordered vectors with BJ Y = I fy& = 0 and




¢'# 0. Then

WC(A) c w)\cl(A) = ch'(A) ’ VA € CHXn )

if and only if A > n(c,e') or A< f(c,e') where 1,0 are defined in

(4.18).

COROLIARY 4. Let a = (o,-++,0p)) and a' = (ap,--+,0p) be ordered

vectors such that not all the components of a' are equal. Set o =3 aj,

a' = ¥ al, -and define
1

e e (a/n:"‘:a/n): ¢' =a' - (a'/n,+.,a'/n) .

Then,

W (A) - {% tr A} c K(Wa.(A) ¥ {%'- tr A}) AR Y S

if and only if A > n(e,e') or A< {(c,c'), where n, { are given in
(4.18).

Proof. The components of the vectors ¢, c satisfy I 'yj = ¥ 'y‘; =0, and

¢' # 0. Hence, by Theorem 8.

W (A) - {% tr A} = W (A) € NW_,(A) = 7\<Wa,(A) " %l tr A) . VA€ C o,

if and only if the conditions of the corollary are satisfied.

o Generali_zed numerical rad'ig.g

A concept which directly relates to the generalized numerical range




Wc(A), is the generalized numerical radius

rc(A) max {Izl sz € wc(A)}

=

In particular we have the k-numerical radius

"

n
jfl 'Yj(ij,xj) S SPRRRFE 39 B l\n} .

rk(A)=max{lz| z e W(A)} km 3,2,000,0 ,
which reduces, for k = 1, to the classical numerical radius

r(A) = max {|z]| : z e WA)} = max |(Ax,x)| .

|x|=l
The function r(A) provides an important tool in the linear stability
analysis of multidimensional hyperbolic and parabolic initial value problems
(e.g., [8] §2), and one may expect that the generalized radius will be
applicable as well.
It is obvious that if WC(A) s wc,(A) or even if WC(A) C conv Wc,(A),

then rc(A) < rc,(A), though the converse may fail to hold. Thus, we use

Theorems 4, 8 and Corollaries 2,3, to obtain, respectively, the following

results.

THEOREM 9. (a) If ¢, ¢' are complex n-vectors with ¢ < c', then

(5.1) r () = ,(A), VAecC -

(b) Let ¢, ¢' be real ordered vectors with E'YJ =Y 73 = 0 and

c' £0. Let A satisfy A > n(c,e’') or A< {(c,c') where n,{ are

defined in (4.1¢). Then

r(A) < Al r(8), wAec .
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(¢) For c = (vy,---,%,) real with zﬁ Yy =
a
‘l?;l’trﬁlsrc(A), R N
If 'szo’ then
r(A)<ar(a), WVAeC .

(d) The k-numerical radii satisfy

1 -
gl Al =r (A) <o <r(B) =x(B) , VA C, .

6. C-numerical ranges

The numerical ranges defined in this paper can be generalized in the

following way.

DEFINITION 3. Let C € Cnxn be fixed and let un denote the group of

n X n unitary matrices. We call the set

Wb(A) = {tr (CU*¥AU) : U e un}

the C-numerical range of the n-square matrix A.

If ¢ = (qi,...,qh) is a given vector, we take D = diag (q&,--o,qh)

and find that

"

n
(6.1) wc(A) {;jfl v J(:',;Ax'j - (xl,...,xn) € An}

"

{tr (DUXAU) : U € un] = wD(A) ‘
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So, indeed, wc(A) is a special case of the C-numerical range. In fact

our last result will characterize the class of matrices C for which

WC(A) = wc(A) . VAeC -

First, we give two simple properties of the C-numerical range.

LEMMA 9. (a) For any C, A € G I have
(6.2) : Wo(R) = W, (C) .

(b) The set W.(A) is invariant under unitary similarities of C or
b LML y =

of A.

Proof. We have

WC(A) {tr (CU*AU) : U ¢ un} {tr (U*AUC) : U € un}

Ll
"

{tr (AUCU¥) : U e un} WA(C) .

so (6.2) holds, and it follows that C and A play a symmetric role in
the definition of WC(A). Hence, for part (b), it suffices to show that
WC(A) is invariant under'unita.ry similarities of A. But that is an
immediate consequence of Definition 3 which states that WC(A) depends only
on the class, 8(A) = {UXAU : U ¢ u,}, of matrices unitarily similar to A.

The next result leads to Theorem 10.

LEMMA 10, If 8, 8' are compact connected subsets of Coxn SO that

(6.3) {o(x) : X € 8 = {p(x') : X' 8"}



for all linear functionals ¢ on Cnxn s, then

X = conv(8} - conv(3'} = x'

Proof. We recall that the hyperplanes (of real dimension o’ . 1) of
Can are the loci of the equations

Re (9(X)) = «
as ¢ varies over the nonzero functionals in ¥ and o varies in R.

nxn

~Since 8 1is connected, a hyperplane intersects 8 if and only if it intersects

conv {8}; thus (£.3) implies
(6.4)  Re ((X)) : X € X} = Re (p(X')) : X' €X'}, VoecCr -
Now choose a functional ¢ and consider the set of real values
Rp(¥) = Be (9(X)) : X e x} .

Since X 1is compact and connected, R¢(y) is a closed interval with end points

Wy = min Re(X) , uy = max Rp(X)

"

This means that a hyperplane Re (9(X)) = a intersects X if and only

if o€ Rw(“)’ and in particular

(6.5) Re (9(X)) = 1y , Re (8(X)) =11,

are the two planes of support for ¥ defined by o.

According to (6.4)

(6.6) nw(x) = nw(x') sy Vo¢ c:xn :
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go the hyperplanes in (6.5) support X' as well as ¥, for all ¢. Since
convex sets are uniquely determined by their supporting planes, the proof
is complete.

THEOREM 10. We have

(6.7) Wo(A) =W, (A) , VAceC,

if and only if C, C' are unitarily similar.

Proof. If C, C' are unitarily similar, then (6.7) is given by part (b)
of Lemma 9.
For the converse we use (a) of Lemma 9 by which the hypothesis in (6.7)

becomes WA(C) = WA(C') for all A; or more explicitly
(6.8) {tr (AU*CU) : U € un} = {tr (AU*C'U) : U € wl, WVAeC, . -

Next we remember that every linear functional ¢ on C_ = 1is of the form

n n
®X)= F I a
=l 31

i,jgji = tr (KX) ,

where A = [ai;j] is a matrix of coefficients, and X = [Ei;j] is arbitrary.

Thus, the hypothesis in (6.8) takes the form
(X) : Xe8) = fp(x') : X' €8}, VWoeck
where
8 = {U*cu :Ueun} ; 3 = {U*C'U:Ueun}

are compact connected subsets of ( o Consequently, by Lemma 10,
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(6.9) X = conv{g} = conv{3'} = X' .

The sets ¥, X' are compact, so they are spanned by the extreme points of
8 and §', respectively. Therefore, by the equality in (6.9) we finally

get

ext(s} - ext{g'} .

X

Now take a point UTCU ' in ext{8}. It equals a point U“’E‘C'U2 in

2 C5

U, are both unitary. That is,

1
ext {8'} where UPIRS

" ! = *
C = U*C'U with U=UW,

and the theorem is proven.
Our last result characterizes the relation between the C-numerical and

the c-numerical ranges.

COROLIARY 5. For a given C € cnxn , there exists a vector c¢ ¢ cn
such that
(6410) Wo(A) =W (A), WVAecC, .,

if and only if C is normal. If C is normal, then the components of ¢

are the eigenvalues of C 1in an arbitrary order.

Proof. By (6.1), the equality in (6.10) is equivalent to having a diagonal

D = diag (Wi""'ﬁh) such that
WelA) =W (A) , WAeC .

But C is unitarily similar to a diagonal matrix, if and only if C is




e e . e

=30

normal, so Theorem 10 completes the proof.
Note that if C is normal with real eigenvalues - that is
Hermitian - then (6.10) holds with a real ¢, and by Westwick's Theorem

wC(A) is convex.

We conclude this paper with the following discussion.

REMARK. It is clear now that Wb(A) is the range of values of the mapping
9 : 8(A) -C
where
8(A) = VAU : Ueulcc
and @ 1is the linear functional on Cnxn defined by
o(X) = tr (CX) .

That is, Wé(A) gives us all the information a single functional can provide
about the set 8(A). From this point of view, WC(A) is an ultimate
generalization of previous concepts of numerical ranges.

However, more information on g(A) could be obtained by considering

mappings of the form
X = (9)(X),+,9,(X)) e €™, (X e 8(A),

where PyrvcsP, are functionals on Can, and m is arbitrary. In fact

we do not need m > n2; for if we denote by wij the functional defined by



e3e

then the mapping

2
n

X - (q)ll(x)’.”’q)nn(x)) — (511,"‘,6m) €C

exactly characterizes the set §(A).
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